
c 1
b

/u-60
MPF: A Portable Message Passing Facility 6 +/70 for Shared Memory Multiprocessors +

p-J-
Allen D . Malony t

@ 7 I
Center for Supercomputing Research and Development I [3

University of Illinois 4
Urbana, Illinois 61801

tt Daniel A . R e e d
Patrick J. McGuire

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

ABSTRACT

d

This paper presents the design, implementation and performance evalua-
tion of a message passing facility (MPF) for shared memory multiproces-
sors. MPF is based on a message passing model conceptually similar to
conversations. Participants (parallel processes) can enter or leave a
conversation at any time. The message passing primitives for this model
are implemented as a portable library of C function calls. MPF is
currently operational on a Sequent Balance 21000, and several parallel
applications have been developed and tested. We present several simpie
benchmark programs to establish interprocess communication perfor-
mance for common patterns of interprocess communication. Finally, we
present performance figures for two parallel applications, linear systems
solution and iterative solution of partial differential equations.

(NASA-CB-18062 1) HPF: A FCElAELE LlESSAGE N67-26s 12
E A Z S I N G FACILITY €OR SBBEEI: FEMCEY
EULTIFBOCESSOBS (I l l i n c i s Uciv.) 25 p
A v a i l : NlIS HC A G Z / P I F A C 1 CSCL 09s Unclas

G3/60 0064770
L

Supported in part by NSF Grant Nos. NSF DCR 84-10110 and NSF DCR 84-08918, DOE Grant No.
DOE DE-FG02-85ER25001, and a donation from IBM. ' Supported in part by NSF Grant No. NSF DCR 84-17948 and NASA Contract No. NAG-1-613.

LL

Present address: Hewlett Packard Laboratories, Palo Alto, CA.

4

b 4

1

1. Introduction

Historically, programming models for parallel processing have largely been

architecture dependent. The absence of shared memory, for example, typically promotes

message passing as a computing paradigm. In contrast, software for shared memory

multiprocessors encourages the use of shared variables for inter-process communication

and synchronization. Although the reflection of the underlying architecture in the

programming support software encourages efficient use of the hardware, i t constrains the

programmer to a single world view. Because certain algorithms are naturally expressed

in either shared memory or message passing forms, the programmer is forced t o adapt

the algorithm formulation to the available programming model. Unfortunately, this

adaptation may incur a substantial performance penalty.

Snyder [Snyd86] has argued eloquently that we must develop a suitable set of type

architectures that elide unnecessary architectural details while retaining those necessary

to reflect the performance constraints imposed by the hardware. These type architecture

abstractions would, for example, permit an algorithm designer to accurately estimate the

performance penalties when moving from one type architecture to another.

Unfortunately, no such abstractions and performance models yet exist.

To investigate the performance tradeoffs between the shared memory and message

passing paradigms, we have used the existing primitives on a shared memory machine t o

develop a message passing facility. With the versatility of shared memory machines, the

message passing primitives are easily implemented. In contrast, realizing the

functionality of shared memory on message passing architectures is considerably more

2

difficult .'
This paper presents the design, implementation and performance of a general

message passing facility (MPF) for shared memory multiprocessors. As stated earlier, the

motivation for this work is not merely to produce a message passing implementation, but

also to explore the problems and performance penalties of cross-architecture algorithm

ports. esh 1 "The MPF Message Passing Model"

T o assess the advantages, disadvantages, and performance penalties of message

passing on a shared memory architecture, it is crucial that the implementation be based

on a fully general message passing model. Hence, the MPF message passing model is

generic, independent of that supported by any vendors of message passing machines (e.g.,

Intel [Ratt85]). We develop the notion of logical, named virtual circuits as a basis for the

MPF message passing semantics.

A virtual circuit is, according to standard definition, a logical connection between

two communicating entities; the physical realization is unspecified. In the MPF model,

the communicating entities are sets of processes whose membership can change during the

lifetime of a virtual circuit. Because processes can join or leave virtual circuits, messages

are directed to a virtual circuit, not individual participants. By defining names for

virtual circuits, participants can join or leave the associated conversations [CoPe86];

clearly, these mutually selected names must be unique. The resulting abstraction is a

logical, named virtual circuit (LNVC).

It is important to understand that LNVC's provide a fully general communication

paradigm. Conversations, by analogy with everyday life, include dialogue, group

This asymmetry is the crux of the type architecture notion.

i

3

discussions, and lectures. Equivalently, LNVC’s support both bi-directional and

unidirectional communication with two or more participants. T o permit specification of

a particular conversation type, we must define communications protocols for LNVC’s.

Each process that is a member of an LNVC conversation is either a message sender

or receiver, or both;2 see Figure 1. Message receivers identify themselves as FCFS (first-

come, first-serve) or BROADCAST when they join the conversation. If there is a single

message receiver in a conversation, FCFS and BROADCAST are equivalent. However,

when multiple message receivers exist, only one FCFS receiver will receive each message.

In contrast, all BROADCAST receivers receive all messages. Both FCFS and

BROADCAST receivers can exist simultaneously during a con~ersa t ion .~ In this case,

however, a message will be sent to all BROADCAST receiving processes and to only one

of the FCFS processes.

Justification for this LNVC model comes from two sources: conversation-based

electronic mail [Cope861 and distributed variables [Debe86]. Like LNVC’s, conversation-

based mail permits participants to enter or leave the discussion at their discretion.

In contrast, distributed variables arose as a programming paradigm for message

passing systems. Intuitively, a distributed variable exists in a name space that is global

to the processes but accessible only by a message passing protocol with associated read

and write operations. In addition, a set of process interaction rules describes the

semantically valid operations for each type of distributed variable. Like LNVC’s, a

distributed variable permits multiple readers and writers.

* An LNVC exists only if the set of senders or receivers is not null.

a The only restriction is that a receiving process of an LNVC cannot use both FCFS and BROADCAST
protocols.

4

2. MPF Programming Environment

The user interface to the MPF message passing environment is a library of high-

level interface routines for LNVC management, protocol establishment and message

transfer. Because our current implementation is based on the C programming language,

the MPF programming primitives are defined below as C function calls.

init (maxLNVC’s, maxjrocesses)

openJend (processid, Invcsame)

openreceive (processid, lnvcgame, protocol)

closeJend (processid, lnvcjd)

closereceive (processid, lnvcid)

message~end (processid, lnvcid, sendbuffer, bufferlength)

messagereceive (processid, lnvcid, receivehuffer , bufferlength)

checkreceive (processid, lnvcid)

Init() is the initialization routine for MPF. Most architecture specific initialization

and allocation are done here. In particular, shared memory is allocated for LNVC’s and

synchronization variables are initialized for exclusive access to internal data structures.

The parameters mozJNVC’s and maz-processes, the maximum number of LNVC’s and

processes, respectively, are used to estimate the amount of shared memory necessary.

Opendendo establishes a send connection for the process process-ad on the LNVC

lnvcjlame. If lnvcname did not previously exist, it is created. The integer returned by

open_send() is MPF’s internal LNVC identifier for Invcjlame. This identifier must be

used in the messagegendo and closesend() routines.

5

Openreceive0 establishes a receive connection for the process process-id on the

LNVC lnucname with the communication protocol protocol (FCFS or BROADCAST).

Again, if lnvclrame did not previously exist, i t is created. An integer return value

specifies MPF’s internal LNVC identifier for lnuclrame for use in closereceive(),

messagereceive0 and checkreceive().

Close_send() and closexeceive() remove send and receive connections,

respectively, for process process-id on LNVC lnvc-id. If this is the last process connected

to lnvc-id, the LNVC is deleted and all unread messages are discarded.

Message_send() transfers a message from process process-id t o the LNVC lnuc-id.

The contents are taken from (char *) send-bufer and the message length is buferJength

bytes. Message sending is asynchronous, allowing a process to proceed before the message

reaches its destination(s). Messagereceive0 transfers a message from LNVC lnvc-id to

the process process-id into the receive buffer starting a t (char *) receive-bufler.

BuferJength is set to the number of bytes transferred. Messagereceive() is blocking;

i t returns only after a message has been received.

Checkreceive0 allows process process-id t o check for the existence of any

messages in LNVC lnuc-id. A non-zero return value indicates the existence of a message.

If the receive connection is BROADCAST, the message is guaranteed to be present when

a messagereceive0 is executed. However, a process with a FCFS receive connection

must. use checkreceive0 with caution. Although checkreceive() may indicate that a

message is present, another process with a FCFS receive connection for lnvc-id may

acquire the message before the checking process can receive the message.

These MPF programming primitives provide the user a high-level interface to the

MPF message passing model. The following section describes the implementation of the

.

6

MPF programming environment for a shared memory multiprocessor system.

3. MPF I m p l e m e n t a t i o n

Intuitively, one would expect a significant performance and programming overhead

t o realize LNVC conversations. Our implementation experience on a Sequent Balance

21000 suggests that this is not the case. The MPF run-time support is only a few

hundred lines of C code, and the only system dependent code involves shared memory

allocation and synchronization. MPF could be easily ported t o any system providing

these facilities. The remainder of this section describes the underlying MPF

implementation and the motivation for the choice of MPF primitives.

3.1. Data Structures

Dynamically linked data structures are used extensively in the MPF implementation

for programming flexibility. The fundamental data structure is the MPF message.

During MPF initialization, a free list of linked message blocks is created in shared

memory'. Space allocated from this free list is used for messages during program

execution. Messages are composed of linked message blocks together with a header for

saving pertinent message information (e.g., message length, a pointer to the tail, and a

pointer to the next message in a list of messages for an LNVC). During execution of a

message~3end(), the sending buffer is copied into the message block data fields. The

message is then copied into the receiving buffer as part of the messagereceive()

operation.

' In all of our experiments, 10 byte message blocks were used.

I 7

The key MPF design problem was identifying an effective data structure for an

LNVC. Virtual circuits provide time-ordered message delivery [Tane81]. LNVC’s

behave similarly. Because shared memory multiprocessors provide a global clock and

access to message buffers is serialized by synchronization primitives, most complications

arising in a distributed memory context are avoided. A time-ordered message stream

will be seen by all BROADCAST receiving processes. In contrast, a FCFS receiving

process will see only a part of the message stream. However, the sequence preserving

LNVC forces a time-ordering of this sub-stream as well.

Clearly, a FIFO queue suffices to maintain sequentiality of messages between

sending and receiving processes. However, each BROADCAST receive process must have

its own head pointer, and the FCFS receive processes must share a head pointer. Figure

2 illustrates one possible state of an LNVC with FCFS and BROADCAST receive

processes. Hence, an LNVC descriptor contains the LNVC name, its internal identifier,

the number of queued messages, a FIFO queue implemented as a linked list of messages, a

FIFO tail pointer for sending processes, a FIFO head pointer for FCFS receiving

processes, a description of all connections to the LNVC, and a synchronization lock for

mutual exclusive access to the LNVC descriptor. The LNVC connections are represented

by send descriptors and receive descriptors, which contain the process identifier of the

connected process. BROADCAST receive processes have an additional descriptor field

used for individual FIFO head pointers. Like message blocks, LNVC, send, and receive

descriptors are linked into free lists when not in use.

3.2. P r o g r a m m i n g Primitives

The constraints necessary to insure consistent and efficient access to the MPF data

structures by concurrently executing processes, dictate the implementation of the MPF

_ _ _ _ ~ ~ ______

8

programming primitives. Rather than describing the details of da ta structure

manipulation and process mutual exclusion, we focus on two of the interesting design

issues that arose during the implementation.

Implementing the LNVC close operations raises the fundamental question of LNVC

lifetime. We generally regard an LNVC as existing only when there is a connected

sending or receiving process; the current implementation is based on this principle. The

semantics of the close operations state tha t the entire LNVC FIFO structure is discarded,

including messages, if the closed sender or receiver process is the last one connected t o the

LNVC. However, this implementation decision has ramifications on process interaction.

Some care must be taken to ensure that messages will not be lost due to unconnected

processes. For instance, a sending process might want to open a send connection on an

LNVC, send some messages, and then close the connection. However, if none of the

processes intending to receive these messages have established a receiver connection

before the closing of the sender connection, the messages could be lost when the LNVC is

removed.

The eloeejeceive() operation poses a particularly vexing problem. If the FIFO

head pointer for a receiving process is pointing t o the head of the FIFO message list and

the receiver connection is closed, all messages unread by the receiver but read by all other

connected receiver processes must be deleted. Unfortunately, i t is difficult to determine

which messages should be deleted without comparing the FIFO head pointers of all

receiving processes with the starting address of each message considered.

9

4. MPF Experiments

To investigate the ease of use and the performance of MPF, we developed several

test programs for the Sequent Balance 21000 [Sequ86]. All experiments were conducted

on a machine containing 20 processors and 16 Mbytes of memory. Each Balance 21000

processor is a 10 MHz National Semiconductor NS32032 microprocessor, and all

processors are connected to shared memory by a shared bus with a 80 Mbyte/s

(maximum) transfer rate. Each processor has a 8K byte, write-through cache and an 8K

byte local memory; the latter contains a copy of selected read-only operating system data

structures and code.

With MPF on the Balance 21000, parallel programs consist of a group of Unix

processes that interact using LNVC’s. The shared memory used by MPF is implemented

by mapping a region of physical memory into the virtual address space of each process.

Our initial experiments concentrated on verifying the LNVC implementation and

establishing performance benchmarks for simple message transfer configurations. To test

MPF’s performance in a parallel program, we developed a message based version of the

Gauss-Jordan algorithm (with partial pivoting) for solving linear systems. As an

additional test, we implemented a successive over-relaxation (SOR) algorithm for solving

Poisson’s equation, an elliptic partial differential equation. Each of these tests is

discussed in detail below.

Perhaps the simplest performance test is the throughput of an LNVC consisting of

one sender and one receiver. TO determine the LNVC throughput, measured in bytes per

second, we designed a simple program, base, that establishes a loop-back connection

through an LNVC for a single process, and then alternates between sending and receiving

fixed-length messages. Figure 3 shows the performance as a function of message length.

10

Although throughput increases with increasing message length, i t approaches an

asymptote. Detailed measurements show that, for large messages, LNVC updates are of

negligible cost. Instead, message copying costs dominate; memory bandwidth is the

performance limiting factor.

Although the base benchmark defines the byte transfer rate limit between a sender

and one receiver of an LNVC, typical applications involve many processes. The message

transfer rate for parallel programs depends on the relative amounts of FCFS and

BROADCAST communication. However, i t is possible to compare the performance of a

set of parallel processes that use FCFS LNVC’s to a similar set using BROADCAST

LNVC’S.~ Hence, we developed two synthetic parallel programs, fcfs and broadcast. The

program fcfs uses one process to send messages of length K to an LNVC with N F C F S

receiving processes. The program broadcast is similar except the receiving processes are

of type BROADCAST. Figures 4 and 5 show the message transfer rates for fcfs and

broadcast, respectively.

The benefit of larger messages is evident in both Figures 4 and 5 . However, the

throughput for fcfs is very different from broadcast. With the fcfs benchmark, only one

FCFS process can receive each message. Hence, the total message throughput is limited

by the message transmission rate. The decreasing throughputs for 16-byte and 128-byte

messages are caused by increased LNVC contention with additional receiver processes.

For larger messages, this contention is masked by message copying costs.

The throughputs for the broadcast benchmark illustrate the MPF support for

concurrent messagejeceive() operations by BROADCAST receivers. Although the

In a FCFS LNVC, all receiving processes are FCFS, and there are no BROADCAST receive connec-
tion. A BROADCAST LNVC is the converse.

11

actual message transmission rate is unchanged from the fcfs benchmark, all message

receivers obtain a copy of each message. Thus, by allowing the receiver processes to copy

messages concurrently, higher throughputs can be achieved. The maximum attainable

broadcast throughput is limited by the concurrent efficiency of MPF, as well as the

memory bandwidth. MPF achieved an effective throughput of 687,245 bytes per second

for 1024-byte messages and 16 receiving processes. As with the fcfs benchmark, message

throughput is sub-linear with the number of processes when the message length is small;

contention is again the reason.

As a final throughput benchmark, we constructed a synthetic program whose

processes can each send to and receive from all other processes. The communications

pattern is fully-connected with a FCFS LNVC defined for each destination process. In

this benchmark, each process sends a specified number of fixed-length messages;

destinations are selected randomly. Each time a process executes a messagesend(), i t

then receives all messages that are queued in its LNVC.

Figure 6 shows the results obtained with this benchmark program. As expected,

throughput increases as message length increases. More importantly, message throughput

increases as additional processes are added to the benchmark. This implies that MPF can

support concurrent operation on multiple LNVC’s. We expect increasing overhead with

more processes, however, and this is evident in the decreasing slope of the throughput

curves.

When a large number of processes are transmitting large messages, MPF must

allocate a large amount of memory for message buffers. The larger the memory

requirements for message transfer, the more susceptible MPF performance is to virtual

memory overheads. For 1024-byte messages, paging overhead increases rapidly for more

12

than 10 processes; this is the reason for the decrease in observed throughput. Paging

overheads are also significant for 256-byte messages but do not occur until their are 20

active processes. Similar behavior would likely occur for smaller message sizes if the

Balance 21000 had additional processors.

As an application test program, the Gauss-Jordan algorithm (with partial pivoting)

for solving linear systems is ideal; it contains both one-to-one and broadcast

communications. The Gauss-Jordan algorithm converts the linear system Az = 6 , where

A is non-singular, to the equivalent linear system A'z = 6' where A ' is diagonal. The

parallel implementation of this algorithm partitions the matrix A into equal sized groups

of contiguous rows; each partition is assigned to a process. Each process searches for the

maximum element in the current column, and sends this value to an arbiter process. The

arbiter process identifies the maximum of the maxima, and advises the process holding

this value. The identified process broadcasts the selected pivot row to all other processes.

The processes then sweep the rows of their partition using this pivot row and begin a new

iteration.

Figure 7 shows the speedup for the Gauss-Jordan algorithm as a function of matrix

size and the number of processors. Speedup is greater with larger matrices; this is the

classic computation versus communication balance faced by message-passing systems. As

noted above, there are two types of communication: selecting a pivot row and

broadcasting that pivot row. Increased parallelism increases the number of FCFS

messages sent to the arbiter process during pivot selection. Similarly, increased

parallelism means additional processes must capture the pivot row as i t is broadcast.

Conversely, increased parallelism decreases the number of matrix rows assigned to each

task. Hence, the computation per process decreases while the communication cost

13

increases. In the extreme, excessive parallelization yields insufficient computation per

iteration, and speedup declines. Larger matrices permit effective use of more processors.

The most important conclusion to be drawn from Figure 7 is that real speedups can be

obtained in the MPF environment.

As a final test of the flexibility of the MPF programming environment, we adapted a

parallel, elliptic partial differential equations solver, written for a hypercube [Ratt85].

The solver iterates over a grid of points, using successive over-relaxation (SOR), until the

grid converges to a solution of the partial differential equation. If the grid of points

P P contains PXP points, i t is partitioned into N X N subgrids of size -X- . Each subgrid
N N

is assigned to a processor, and each processor iterates over its subgrid. On each iteration,

the boundaries of each sub-grid must be exchanged with the four neighboring processors.

In addition, the processors determine if the local sub-grid has converged and send this

status information to a monitoring process. Because the computation cost for an

iteration is proportional to the area of the sub-grids, and the communication cost is

proportional to their perimeter, the computation/communication ratio can be adjusted

by varying the number of processors.

Porting the hypercube program to MPF was very simple. The interprocess

communication among neighbors corresponds naturally to FCFS LNVC’s. Similarly,

BROADCAST LNVC’s were used to broadcast convergence information from the

monitoring process. Figure 8 shows speedup as a function of grid size and number of

6 processes.

’ Because no equivalent, sequential solver was available, all speedups are shown relative to the smallest
parallel solver: 4 processes.

14

Certainly, more experimentation is necessary to explore the usefulness of MPF for

real message passing applications development. However, the experimental programs and

results presented above are encouraging as an indication of the programming flexibility of

the MPF environment and MPF’s ability to support concurrent operation.

5. Conclusion

A message passing environment for shared memory multiprocessors is interesting for

several reasons. As a parallel programming paradigm conceptually different from the

shared memory approach, message passing offers the user a different programming

alternative. A particularly interesting benefit of a message passing facility for shared

memory machines is the ability to develop a program using a hybrid parallel

programming paradigm.

MPF supports the paradigm with a general message passing model and an

implementation that hides the details of the underlying message communications.

Programs destined for message passing systems can be easily prototyped in the MPF

environment. The versatility of a shared memory machine provides a flexible

implementation base for a message passing facility. The Sequent Balance 21000 MPF

implementation takes only 800 lines of heavy-commented C code and adds 7000 bytes to

a user’s program. Furthermore, the implementation is completely portable between

shared memory multiprocessors that provide locking and memory sharing between

concurrently executing processes.

The MPF implementation discussed in this paper has clear inefficiencies resulting

from the full support of the general message passing model. One method t o improve the

performance of the MPF system is to restrict the generality of message communication

15

and process interaction. Clearly, simpler and more efficient implementations can result.

For instance, to support synchronous message passing, copying of da ta from a sending

buffer t o a linked message buffer and then to the receiving buffer is unnecessary; direct

data transfer is possible. Furthermore, if only one-to-one communication is

implemented, all locking associated with message handling is removed. Studies of

simplified message passing systems for shared memory multiprocessors are currently

underway. One important research issue with these systems is the effect of the parallel

programming paradigm (message passing or shared memory) on application performance.

6. Acknowledgments

Jack Dongarra and the Advanced Computing Research Facility of Argonne National

Laboratory graciously provided both advice and access to the Sequent Balance 21000.

16

References

[Cope861 D. E. Comer and L. L. Peterson, "Conversation-Based Mail," A C M
Transactions on Computer Systems, Vol. 4, No, 4, pp. 299-319, November
1986.

[Debe85] E. P. Debenedictis, "Multiprocessor Programing with Distributed Variables,"
Proceedings of the First Conference on Hypercube Multiprocessors," 1986,
SIAM Press, pp. 70-86.

[Duni86] T. H. Dunigan, "A Message-Passing Multiprocessor Simulator," Oak Ridge
National Laboratory, Technical Report No. ORNL/TM-9966, May 1986.

[Fuji831 R. M. Fujimoto, "SIMON: A Simulator for Multicomputer Networks,"
University of California at Berkeley, Computer Science Division, Report No.
UCB/CSD83/140, September 1983.

[Hoar781 C. A. R Hoare, "Communicating Sequential Processes," Communications of
the ACM, August 1978, pp. 666-667.

[LeB186] T. J. LeBlanc, "Shared Memory Versus Message-Passing in a Tightly-
Coupled Multiprocessor: A Case Study," Proceedings of the International
Conference on Parallel Processing, August 1986, pp. 463-466.

[PuRG86] J. Purtilo, D. A. Reed, D. C. Grunwald, "Environments for Prototyping
Parallel Algorithms," University of Illinois, Department of Computer
Science, Technical Report No. UIUCDCS-R-86-1249, February 1986.

iRatt85j J. Rattner, ''Concurrent Processing: A New Direction in Scientific
Computing, Conference Proceedings of the 1985 National Computer
Conference, AFIPS Press, Vol. 54, pp. 157-166, 1985.

[Snyd86] L. Snyder, "Type Architectures, Shared Memory and the Corollary of Modest
Potential," University of Washington, Department of Computer Science,
Technical Report No. TR 86-03-04, 1986.

[Sequ86] Sequent Computer Systems, Guide to Parallel Programming on Sequent
Computer Systems, 1986.

[TaneBl] A. S. Tanebaum, Computer Networks, Prentice Hall, Englewood Cliffs, New
Jersey, 1981.

Figure 1
MPF Message Passing Model

FCFS
Receiving
Processes

e

e

e

e

Logical
Named
Virtual
Circuit

e

\ *
U

Sending
Processes h

BROADCAST
Receiving
Processes

FIFO tail
pointer

e

e

e

Sending
Processes

(sharing FIFO
tail pointer)

Messagei

. Figure 2
Possible State of an LNVC

FCFS FIFO
head pointer

U I

e
e
e

FCFS
e Receiving
e Processes

(sharing FCFS
head pointer)

’ BROADCAST
e Receiving
e Processes

(with individual
FIFO head
pointers)

e

I

Figure 3
Base Benchmark

Throughput vs. Message Length

Throughput (bytes/sec)

25000

20000

15000

10000

5000

0
0 256 512 768 1024 1280 1536 1792 2048

Message Length (bytes)

Figure 4
Fcfs Benchmark

Throughput vs Receiving Processes

Throughput (bytes/sec)

50000

40000

30000

20000

10000

I I l

a n n

0 16 byte messages
o 128 byte messages
0 1024 byte messages

0 4 a 12
Number of Receiving Processes

16

Figure 5
Broadcast Benchmark

Throughput vs Receiving Processes

Throughput (bytes/sec)

700000 I I I

0 16 byte messages

0 1024 byte messages
o 128 byte messages

500000 /

1

0 4 8 12 16
Number of Receiving Processes

240000-

21oooo-

180000-

150000 -

120000-

9OoOo-

60000-

30000 -

Figure 6
Random Benchmark

Throughput vs Processes

270000 , I I I

0 1 byte messages
o 8 byte messages
0 64 byte messages
x 256 byte messages
V 1024 byte messages

01
Y

L - -
I

- -
I

-
I t

0 5 10 15 20
Number of Processes

Figure 7
Gauss Jordan

Speedup vs. Processes

Speedup

32x32 matrix
o 48x48 matrix
0 64x64 matrix
x 96x96 matrix

-

I

0 4 8 12 16
Number of Processes

Figure 8
Poisson Elliptic PDE Solver with SOR Iterations

Per Iteration Speedup vs. Dimension (N)

Per Iteration Speedup

2

I

0 65 x 65 problem
o 33 x 33 problem
0 17 x 17 problem
x 9 x 9 problem

3
Dimension (NxN Processors)

4

